Explaining Synthesized Software

Jeffrey Van Baalen, Peter Robinson
Michael Lowry, Thomas Pressburger
NASA Ames Research Center
M.S. 269-2, Code IC
Moffett Field, CA 94035

{jvb,lowry,robinson,ttp}@ptolemy.arc.nasa.gov
http://ic-www.arc.nasa.gov/ic/projects/amphion/docs/amphion.html
* Recom Technologies, Inc.

Abstract

Motivated by NASA’s need for high-assurance sdittroduction
ware, NASA Ames' Amphion project has developed a ge-

nerig program generation system based on deductive syn- The Amphion project in the Automated Software Engi-
thesis. Amphion has a number of advantages, such as)Hi§ing group at NASA Ames Research Center is investi-
ability to develop a new synthesis system simply by writingRing technology to support the development of high-
declarative domain theory. However, as a practical mattglssrance software. Amphion/NAIF [7, 5] is a domain-
the validation of the domain theory for such a systemgisaific, high-assurance software synthesis system based on
problematic because the link between generated prograiN§ecialization of the generic Amphion architecture. Am-
and the domain theory is complex. As a result, when gepgfion/NAIF takes an abstract specification of a problem in
gted programs do not behgve as e.xpected, it is dIffICUlTSH?ar system observation geometry, such as “when will a
isolate the cause, whether it be an incorrect problem sp&gima| sent from the Cassini spacecraft to Earth be blocked

fication or an error in the domain theory. . by the planet Saturn?”, and automatically synthesizes a
This paper describes a tool we are developing that pggsrtran program to solve it.

vides formal traceability between specifications and gener- Amphion greatly facilitates reuse of domain-oriented
ated code for deductive synthesis systems. It is basedffjyare libraries by enabling a user to state a problem in an
extensive instrumentation of the refutation-based theorgfyiract, domain-oriented vocabulary. The programs gener-
prover used to synthesize programs. It takes augmendgdy py Amphion/NAIF consist of assignment statements
proof structures and abstracts them to provide explanatiofigy calls to components from the SPICELIB software li-
of the relation between a specification, a domain theopary in the NAIF toolkit. It takes significantly less time for
and synthesized code. In generating these explanations 5fh@xperienced user to develop a problem specification with
tool exploits the structure of Amphion domain theorles,gg]phion than to manually generate and debug a program.
the end user is not confronted with the intricacies of rajgre importantly, a novice user does not need to learn the
proof traces. details of the components in the library before using Am-

This tool is crucial for the validation of domain theoriegsion to create useful programs. This removes a significant
as well as being important in every-day use of the cqflg ier to the use of software libraries.

synthesis system. It plays an important role in validation Amphion uses deductive synthesis in which programs
because when generated programs exhibit incorrect behgys synthesized as a byproduct of theorem proving from an
ior, it provides the links that can be traced to identify errogssjication domain theory, such as the domain of solar sys-
in specifications or domain theory. It plays an importagdm opservation geometry. In this paradigm, problem speci-

rolg .in the every-day use of the syr)t'hes.is system byf@X4tions are of the fornilxl Y[P(X,y)], where X and y
pla!n|ng to users vyhat parts of a gpeC|f|cat|on or of the dgr'e vectors of variables. The theorem prover generates con-
main theory contribute to what pieces of a generated pL

i . i ructive proofs in which witnesses have been produced for
gram. Comments are inserted into the synthesized codeé a4 of the variables iry. Amphion/NAIF demonstrates
document these explanations.

that, using deductive synthesis, it is possible to create do-

main-specific systems that enable users to generate hig&nation of all aspects of generated code, enabling a user
assurance software cost-effectively. to probe the rationale for a generated program in terms of

Deductive synthesis has several potential advantatiesdomain theory. Based on our past experience in validat-
over competing synthesis technologies. The first is the wilg and debugging Amphion domain theories, this facility is
known but unrealized promise that developing a declaratxpected to enable domain experts to home in on parts of a
domain theory costs less than developing a special-purgtm®ain theory that lead to faulty programs. This is part of
synthesis engine through ad-hoc techniques. The sedtedlarger goal of the Meta-Amphion project: enabling do-
advantage is that synthesized programs are correct relatiaen experts to construct, validate, and maintain their own
to a domain theory and the component library. The thiigh-assurance software synthesis systems.
advantage is that this relative correctness is rigorously The next section of this paper introduces the explana-
documented in a verification proof, thereby potentially proen tool through a simple example from the NAIF domain.
viding more understandable and readable code than everstwion 3 then provides an overview of the Amphion de-
best documented manually developed code. This latter ghactive synthesis system, sufficient to understand the tech-
tential advantage is considerable, as state-of-the-praatical development in the rest of the paper, illustrated with
code generators produce programs that are unfit for hurtias same example. Section 4 then illustrates the mechanics
consumption or human maintenance. This potential of dé-generating an explanation. Section 5 develops the
ductive synthesis has not been realized because raw, mahematical framework for generating explanations. Sec-
chanically-generated proofs are also unfit for human cdion 6 describes our tracing algorithms. Section 7 then re-
sumption, and can only be understood through a laboritaies this work to previous work and discusses future work.
process by experts in theorem-proving technology.

This paper describes a tool we have developed (gnttoduction to the Explanation Tool
have nearly finished implementation as of May 1998) to
provide explanations of programs generated by Amphion. It \ye jllustrate the need for an explanation tool with the

will first be used to automatically insert comments into g&Bfiowing example. Figure 1 shows a simple specification
erated code that document the relation between proggn to the Amphion/NAIF system.

variables and parts of the specification and domain theory. It
will then be used to provide a dynamic web-browsable ex-

I — Earth—Mars—Distance-Ttp
File Edit Graph Window Freferences Help
31‘ e ! ‘ N
a?—?rme
Hme —g)s
Body—Iars cen?er
\ ot Body Earth _JTC | UTC-Calendar |
Behieel —points
B —rraine f?emf? POW? 7 f:-oajf—name
|Dlstance—Ea:rﬂ1 Ilars L_JE' E
el
Iilars
<4 [
Jdava Applet Window

Figure 1: A simple specification for Amphion/NAIF

This specification depicts the constraints on a progréance between the center of Earth and the center of Mars at
that takes a time as input and produces as output the tbie-time. In general, specifications are given ahlastract

level and programs are generated atoacretelevel (in-
put/output parameters are exceptions to this). Abstract ob-
jects are free from implementation details; thus, a point is an
abstract concept, while a Fortran array of three real numbersC
is a concrete, implementation-level construct. The concrete
array may represent the point, in which case this representa-
tion must be further specified by a coordinate system and
the origin and orientation of the coordinate axes.

The input in Figure 1YTCIN in the upper left of the
diagram) is depicted by a chevron with an arrow pointing
into it. This chevron is connected to two other objects,
Time-of-InteresandUTC-Calendar Time-of-Interests an
abstract time, that is, an object representing the concept of a
particular time.UTC-Calendaris a concrete time system.
The arrows indicate that the abstraane-of-Interests rep-
resented in a program by a data obj&£TCIN, which is
interpreted as a time coordinate Wi C-Calendarformat.
Body-EarthandBody-Marsare abstract objects; each repre-
sents thestate (space-time location and orientation) of its
respective planet at the given time. HenBedy-Earthis
constrained to be the state of the planet with the rizemih
at Time-of-InterestThe variableDistance-Earth-Margs the

DOUBLE PRECISION SEARTH (6)
DOUBLE PRECISION PSMARS (3)
DOUBLE PRECISION PSEART (3)
Error handling
IF (RETURN()) THEN
RETURN
ELSE
CALL CHKIN ('EARTHO0")
END IF

CALL UTC2ET(UTCIN,E)

CALL
SPKSSB(EARTHN,E,'J2000', SEARTH)
CALL
SPKSSB(MARSNA,E,'J2000', SMARS)
CALL ST2POS(SEARTH,PSEART)
CALL ST2POS(SMARS,PSMARS)
EMDIST = VDIST(PSEART,PSMARS)

CALL CHKOUT ('EARTHO")
RETURN
END

abstract distance between the centerg of the two t_JodiesF@iure 2: Resulting Fortran program

nally, the outpuEMDIST (the chevron in the lower right of

the diagram) is the concrete representation of the abstractlt is difficult for the developers of Amphion/NAIF, let
distance in kilometerS mphion/NAIF will generate the alone space scientist users that are not familiar with the
program shown in Figure 2 from this specificatfon: component library, to understand the relationship between
this program and the specification given above - and this is
an extremely simple example. As the complexity of specifi-
cations increases, it becomes increasingly difficult to under-
stand this relationship. The goal of the tracing tool is to

SUBROUTINE EARTHO (UTCIN, EMDIST)
IMPLICIT NONE
DOUBLE PRECISION SLOC(3)

C Code for EARTH-MARS-DISTANCE make this relationship explicit.

C Request-id: REQ-1998-04-06-14-58-47-423 The actual computation performed in this example con-

C Parameters sists of the sequence of subroutine and function calls that

C MARSNA is Mars-NAIF-ID are shown in bold font. A good way to explain the links
INTEGER MARSNA from this program to the specification is to explain the rela-
PARAMETER (MARSNA = 499) tionship between the Fortran variables and the variables in

C EARTHN is Earth-NAIF-ID the specification. Our tool automatically inserts comments

INTEGER EARTHN
PARAMETER (EARTHN = 399)
C Input variables
CHARACTER*(*) UTCIN
C Output variables
DOUBLE PRECISION EMDIST
C Functions
DOUBLE PRECISION VDIST
LOGICAL RETURN
C Local variables
DOUBLE PRECISION E
DOUBLE PRECISION SMARS (6)

that provide this explanatioin doing so, the tool exploits
the structure of Amphion domain theories, so the end user is
not confronted with the intricacies of raw proof traces. For
the program in Figure 2, the following comments are in-
serted before the sequence of calls:

E represents Time-of-Interest in the ephe-
meris time system

SEARTH is an intermediate value used in
computing the-center-of-Body-Earth
SMARS is an intermediate value used in
computing the-center-of-Body-Mars
PSEART represents the-center-of-Body-
Earth in rectangular coordinates J2000 at
Time-of-Interest

PSMARS represents the-center-of-Body-

O000000

! This version of the domain theory only has one representation for dis- C
tances, namely kilometers. Thus this concrete object is not parameter- C
ized.

2 Amphion/NAIF also generates a driver main program for this subroutine, C
but in the interest of simplifying the presentation, this is not shown here.

C Mars in rectangular coordinates J2000 at
C Time-of-Interest

C EMDIST is Distance-Earth-Mars in kilome-
C ters

The Amphion Deductive Synthesis System

mentation of the tracing tool. A more detailed treatment of
the system can be found in [5, 7].

Amphion consists of three subsystems: a specification
acquisition subsystem; a program synthesis subsystem; and
a domain-specific subsystem. Figure 3 presents a flow dia-
gram of the system, where the dotted lines enclose subsys-
tems, the rectangles enclose major components, and the
ovals enclose data.

This section describes the components of our deductive
synthesis system in sufficient detail to motivate the imple-

Domain $ecific Specification Aguisition
Interface GUI
i S
Compiler Spec [T User
Domain Editor

formal
Specification

Program Synthesis

subroutine

Translator

Figure 3: Amphion

Block Diagram

1.1 Specification Acquisition

The specification acquisition system includes a gra
cal user interface that enables a user to interactively bu
diagram representing a formal problem specification in fi
order logic. A graphical specification is automatically cq
verted into a formula to be proved. Thus, the graph
specification diagrams are equivalent to specifications
first-order logic) of the following form:

lambda (inputs)

find (outputs)
exists (intermediates)
conjungt&...& conjunct,
The input variables of the specification (bound by

lambdg are universally quantified, while the output vayri- (= the-center-of-Body-Earth

ables (bound by thfind) are existentially quantified withir
the scope of the input variables. The intermediates (bd
by exist9 are also existentially quantified within the sco

of the input variables. The conjuncts are all expressed in the

abstract specification language, except for conjuncts
pressing the relationships between concrete input or ol
variables and the abstract variables they represent. The
order form of the specification depicted in Figure 1 is gi
in Figure 4.

(LAMBDA (UTCIN)
(FIND (EMDIST)
 (EXISTS
bhi- (Time-of-Interest Body-Earth Body-Mars
;Iso:_a the-center-of-Body-Earth
. the-center-of-Body-Mars
ca Distance-Earth-Mars)
(in(AND
(= Body-Earth
(BODY-ID-AND-TIME-TO-BODY
Earth Time-of-Interest))
(= Body-Mars
(BODY-ID-AND-TIME-TO-BODY
the Mars Time-of-Interest))

(BODY-TO-CENTER Body-Earth))
o (= the-center-of-Body-Mars
P (BODY-TO-CENTER Body-Mars))

und

ex- (= Distance-Earth-Mars

tput (TWO-POINTS-TO-DISTANCE

first- the-center-of-Body-Earth

en the-center-of-Body-Mars))
(= Time-of-Interest

(abs (coordinates-to-time UTC-Calendar) Fortran program resulting in our example is shown in Figure
UTCIN)) 2.

(= EMDIST _ -

(UIREPN-KILOMETERS-TO-DISTANCE 1.3 Domain Specific Components

Distance-Earth-Mars))))))

) o The domain specific components of an Amphion appli-
Figure 4: Formal Specification of the Earth-Mars-

cation consist of a domain theory and a component library.
Distance problem An Amphion domain theory has three parts: an abstract the-

ory whose language is suitable for problem specifications, a

concrete theory that includes the target component specifi-

1.2 Program Synthesis cations, and an implementation relation between the abstract

and concrete theories. The implementation relation is axio-

The program synthesis subsystem consists of a progfﬁﬁﬁized through abstraction maps using a method described

generator (theorem prover) and a translator that generjesloare [3]. The domain theory is created by acquiring

code in the syntax of the target programming language.kmowledge from a domain expert, developing appropriate

functional (applicative) program is generated through @®main abstractions and pre/post conditions for the software

ductive synthesis [4]. Amphion/NAIF uses the SNARROmponents, and then constructing axioms.

refutation-based theorem prover [7] to generate a proof that

the specification is a theorem of the domain theory. SNARKenerating an Explanation through Tracing a

has inference rules for binary resolution, paramodulatiqyerivation

and demodulation. The proof cycle consists of one applica-

tion of either binary resolution or paramodulation foIIow_ed This section informally illustrates the process of gener-

by an arbitrary number of demodulations of the resultiggy an explanation through the example of the Earth-Mars-

clause. During a proof, substitutions are generated for Hjgance_Ttp program. The succeeding sections develop the

existential variables through unification and equality Tfiathematics and algorithms of the formal explanation gen-

placemgnt. The substltu.tlons for the output variables 8f&tion process. The process starts with the generated For-

cpnstramed to be terms in the target language whose f"fr%ﬁi program, considered to be the root of a derivation tree,

tion symbols correspond to the components of the SOftWﬁ‘ﬁ% traces backwards to the specification and domain the-

library. . i ory, considered to be the leaves of the derivation tree. Both
We refer to the answer term generated in the final S{§R roof, resulting in an applicative answer term, and the

of the proof process (Figure 5) as #pgplicative termof the 506 of the program transformations, that result in an ab-
proof. We refer to the entire derivation process, includiqgact syntax term for the Fortran program, are part of this
the proof and the transformation of the applicative term, ag.ation tree. An explanation is an equality connecting
derivation. The applicative term generated in proving thrﬁ';trts of the Fortran program to constructs in the specifica-

specification shown in Figure 4 is shown in Figure 5. tion and domain theory, from which it was derived. This

Vd_iSt equality is extracted from the derivation tree. Note, how-
(findp ever, that even though explanations are represented as
(earth-naif-id, o ' equalities, our technique is not limited to equational theo-
_convert-time(utc-calendar,ephemeris-time-ts,utcin)), | ries. For example, Section 0 describes explanation genera-
findp o tion for proofs containing paramodulations. Niether of the
(mars-naif-id, o . formulas used in a paramodulation step is required to be an
convert-time(utc-calendar,ephemeris-time-ts,utcin))) | equality.
Figure 5: Applicative term for the Earth-Mars distance In this paper we will focus on explaining the variables
in a Fortran program, but in general all the constructs in a
problem o
generated program are connected to specification and do-

fgain theory axioms.

Consider the problem of connecting the Fortran vari-

gramming language, such as Fortran for the NAIF domai§1 BSMARS Fi 2\ 1o th ification t
through program transformations. One set of transforfig- . (see Figure 2) to € specilication term rep-
enting the center of body Mars in order to generate the

tions introduces a bound variable for each complex subtéfim . . " :
(e.g.E for convert-time(utc-calendar,ephemeris-timgpmrnent PSMARS is the position of Mars in rectangular

ts,utcin)). Another set of transformations handles subro pordinates ‘]ZOOOF{.’“ the ;’wges-'t)/lf;;tserest." In the generated
tines with multiple output values. In the final stage, varia gr.tran program (Figure 2) appears as an output

declarations and the sequence of component calls are gé’r"f‘é@me ﬁf a Ca"k?lf tgiﬂgsgragjxggqtme STZP;)S whose
ated in the syntax of the target language. Recall '[hat'0 tis the variable ' In rn is the output

a call of the subroutine SPKSSB whose inputs are

The functional program is translated into a target p

MARSNA, E, and J2000. By inspecting the program trg

formation trace, it can be determined that this call

SPKSSB was generated by the program transformafio(ebs (coordinates-to-time ephemeris-time-ts)

from the subtermfindp(mars-naif-id,convert-time(utc
calendar,ephemeris-time-ts,utcindf the applicative term.

The remainder of the trace process proceeds backw

through the proof. Thisindp(...)term is generated by th
demodulation step shown in Figure 6.

Demodulation using the axiom named
Ephemeris-object-and-time-to-position-to-findp:

(= (ephemeris-object-and-time-to-position
(abs (naif-id-to-body-id) Bnid)
(abs (coordinates-to-time ephemeris-time-ts) Et))
(abs (coordinates-to-point rectangular j2000)
(findp Bnid Et)))

on the subterm
(ephemeris-object-and-time-to-position
(abs(naif-id-to-body-id) mars-naif-id)
(abs (coordinates-to-time ephemeris-time-ts)
(convert-time utc-calendar ephemeris-time-ts utcip
yields
(abs (coordinates-to-point rectangular j2000)
(findp mars-naif-id

(convert-time utc-calendar ephemeris-time-ts utcip

Figure 6: An example demodulation step

This step illustrates one of the complexities of the tr
process, namely, the term being trackddp(...) is a sub-
term of the term introduced by this demodulation. The tr
process needs to track the evolution of this subterm b

wards through the derivation tree, where at each node o[

only a subpart of the modified part formula.

Another complexity is that whiléindp is a concrete

function symbal ephemeris-object-and-time-to-positiois
abstract. Hence, this is a step where the term being tr
has moved from the concrete level to the abstract leve

Ngbody-id-and-time-to-body (abs (naif-id-to-body-id)
to mars-naif-id)

(convert-time utc-calendar ephemeris-time-ts,utcin

giels
gephemeris-object-and-time-to-position
(abs(naif-id-to-body-id) mars-naif-id)
(abs (coordinates-to-time ephemeris-time-ts)
(convert-time utc-calendar ephemeris-time-ts utcin

))

Figure 7: Another example demodulation step

Tracing back from this term through several more de-
modulations, we arrive at the leaves of the derivation tree-
namely, the subter(BODY-TO-CENTER Body-Mar$)
the specification . This subterm is equated to the specifica-
tion variable the-center-of-Body-Mars(see Figure 4.
Hence, the trace back to the specification is complete.

Mathematical Framework

2 Derivations consist of annotated proof trees and an-
notated transformation trees. Neither the SNARK theorem
prover nor the transformation system record sufficient in-
formation to enable explanations to be extracted from deri-
)Yptions. The first step in implementing the tracing algo-
rithms described in the next section was to augment both
these Amphion subsystems to provide the needed annota-
6‘tj:%ns. These annotations explicitly record those parts of a
ormula changed in each step in a proof or program trans-
J%mation. Furthermore, the generated Fortran programs are
ap_resented as abstract syntax terms. This provides a uni-
representation for the nodes of a derivation from the
specification to the generated program. Derivations consist
of nodes which are formulas and arcs between nodes which
correspond to proof steps or program transformations. Be-
ag?é.bse transformations are treated as just another type of
| ﬁ{lvation step, we make no distinction in what follows

general, such steps are where additional information ishﬁlween the proof process and the transformation process.

serted into a derivation, such as a quantity’s units and

rep-
resentation. In this example, the demodulation step provﬁgs

the units and representation for PSMARS, i.e., rectang

coordinates in the J2000 frame. This type of information§

inserted into the explanation.
Continuing to trace backwards through the derivat
tree, the next step is the demodulation shown in Figure 7.

Demodulation using the axiom
Body-to-center-to-ephemeris-object-and-time-to-position|

(= (body-to-center
(body-id-and-time-to-body B T))
(ephemeris-object-and—time-to-position B T))

on the subterm
(body-to-center

A subformula is specified by a path description from
root of the formula to the root of the subformula. A path
Fcription is a sequence of argument position selectors,
o using notation similar to [8], the path [2, 1] specifies
subtermb of the termf(a,g(b,c)). The expressiopaths(t)is

HH-) set of valid paths in the tetmThe subterm of a termn
selected by a valid pathof t is writtent@p. The concate-
nation of two pathg andq is denoted by+q. For pathsp
andq, we writep<q if p is a proper prefix of.. In this case,
t@qis a subterm af@p.

In generating explanations, it is important to avoid get-
ting “mixed up” when the same term occurring in different
places has different derivations. To avoid this, we extend
the notion of a path to that oflacation. A location is a pair
<n,p>, wheren is a formula number anglis a valid path in
that formula. Every formula in a derivation is assigned a

unigue number. If the same formula is used more than once PSMARS)),
in a derivation, the different uses have different numbers. If As an example of computing a goal explanation equal-
| is <n,p>, then@l is defined to bdormula,@p. We label ity, consider the following explanation equalities of the
each nonlogical symbol in a formula by its location and WSMARS derivation (in which we have omitted the location
label each variable with its formula number. For example, labels, but keep in mind that these are really equalities be-
formula,=(P,, o (fo.12.00 %) (Gh 201 (2,10 Yo X0)))- tween subtrees):
Formally, a derivation is a directed acyclic graph who6ePSMARS
nodes are derivation steps and whose arcs encode the “¢ftadp mars-naif-id
rived from” relation. The root of a derivation contains the (convert-time utc-calendar ephemeris-time-ts utcin)))
final formula and answer term resulting from a derivation,
and the leaves contain the specification formula and axidmgabs (coordinates-to-point rectangular j2000)
of the domain theory. Each derivation step is a triple (findp mars-naif-id
<F,T,A>, whereA is an inference rule application, akd (convert-time utc-calendar ephemeris-time-ts
andT are the resulting formula and answer term, respec- utcin)))
tively. Each application of an inference rule specifies: the(ephemeris-object-and-time-to-position
inference rule that was applied (one of demodulation, para- (abs (naif-id-to-body-id) mars-naif-id)

modulation, or resolution); the input formulég, ..,F,; and (abs (coordinates-to-time ephemeris-time-ts)

locations of the subterms to which the rule applied. In steps (convert-time utc-calendar ephemeris-time-ts

of the derivation, subterms of formulas will be substituted utcin))))

into the answer terr. {This explanation equality comes from the demodulation

In general, an explanation of a Fortran program step in Figure 6.}
terms of the abstract specification and domain theory is a
collection of explained connections between the variables(ephemeris-object-and-time-to-position
functions and subroutines in the Fortran program and the (abs (naif-id-to-body-id) mars-naif-id)
objects, relations and functions in the problem specification (abs (coordinates-to-time ephemeris-time-ts)
or domain theory. For example, the purpose of the Fortran (convert-time utc-calendar ephemeris-time-ts
variable PSMARS in Figure 2 is explained by identifying its utcin)))
relationship to the specification object representing the (body-to-center
center of body MARS (see Figure 4). We represent the col- (body-id-and-time-to-body
lection of explained connections as a set of equalities be- (abs (naif-id-to-body-id) mars-naif-id)
tween locations (paths in formulas) in a derivation. Then an (abs (coordinates-to-time ephemeris-time-ts)
explanation of the relationship between a Fortran variable (convert-time utc-calendar ephemeris-time-ts
and a specification object is an equality consequence of the utcin)))))
specification formula union the explanation equalities of tflehis comes from the demodulation step in Figure 7.}
derivation. Additionally, the following equalities are a consequence of
Formally, we can associate with each step a sekofthe specification (Figure 4):
planation equalities which are equality assertions of thé= (body-id-and-time-to-body

form t;=t,, wheret, is @@p, andt, is Y@p,, or of the form (abs (naif-id-to-body-id) mars-naif-id)

x=t which comes from a substitution. Each equality is a (abs (coordinates-to-time ephemeris-time-ts)
consequence of the semantics of the inference rule and of (convert-time utc-calendar ephemeris-time-ts
the input formulae. In our implementation, the explanation utcin)))

equalities of a step are represented implicitly by the func-Body-Mars)

tions map-back andpass-through described in Section 0.

The explanations are a theory of only the connections tfmthe-center-of-Body-Mars (body-to-center Body-Mars))
were created by the derivation, not of all possible equalftye derived goal explanation equality :

relations that might be inferred from the input specificati¢m the-center-of-Body-Mars

and the domain theory. (abs (coordinates-to-point rectangular j2000) PSMARS))
A goal explanation equalityor a program variable is is an equality consequence of this set of equalities.
an equality of the form: Standard methods for reasoning about sets of ground
(= <a possibly empty composition of selectors appliedequalities can be used to generate this consequence. For
to an abstract variable> instance, congruence closure can finitely represent the pos-
<the abstraction of the concrete variable to be sibly infinite set of consequences of a set of ground equali-
explained>) ties. Given this goal explanation equality, the comment ex-
e.g., plaining PSMARS is generated directly through template
(= the-center-of-Body-Mars instantiation.

(abs(coordinates-to-point rectangular j2000)

We now formalize the definition of a demodulati
step that uses the equaliyt to rewrite the subterms’ of a
formula @ specified by the path (i.e.s'=®@p).Let o be a

substitution such that=sag. The result of the demodulatio|
stepdemod,p,s=t), is a formula®¥. The explanation

equalities of this application of demodulation are as follo
Becauses=t, substitution ofto for s’ does not change th
denotation of any subterm df that is not a subterm &f.

More formally, for anyqlpathg®), if =(p<q) then

bn (abs (coordinates-to-tinephemeris-time-ts) Et))
(abs (coordinates-to-point rectangular j2000)
(findp Bnid Et)))]

n
Y@p=0@p
W@q=0@p’
V@0 =0@p”
Y@q =rer

Figure 8: An example paramodulation step

P@q=¥Y@q. Explanation equalities between subterms of
®@p and Y@p are specified by the substitutions The explanation equalities of the other inference rules
mgu(s@@p) and mgu(t¥@p). Heremguis the most gen-in our derivation system, namely resolution and transforma-
eral unifier of two terms ignoring the symbol labels. Thosen, are defined similarly.
labels are, however, kept in the resulting unifier.

This approach generalizes to all of the inference ruleslihe Explanation Tool
our system. As another example, the explanation equalities
of a paramodulation step are as follows: Cdbe an axiom Rather than computing explanations by explicitly com-
of the form(s=t 0 Q), whereQ is a disjunction of literals. puting the consequences of all the explanation equalities of
Let paramodulaté®,p,l) be ¥, the result of paramodulatinga derivation, our implemented algorithm uses a more fo-
rinto @[s’] at p, wheres’= ®@p and o=mgu(s,s’) The cused approach that traces back through a derivation from a
resulting formula¥ is a renaming ofp[t] 0 JQo. The ex- term of interest in the abstract syntax tree of the Fortran
planation equalities arer, o,, and 0, where g,= Program and assembles a (usually small) subset of the ex-

mgu(¥@[1]+p, P@p) ando,=mgu(¥@|[2],Q).

planation equalities in the derivation. It uses congruence

The following extract from the derivation of the Fortraglosure to compute the goal explanation equality from this
program in Figure 2 illustrates the explanation equalitiesf@gused subset. Pseudo-code for the algorithm is now pre-

a paramodulation step:

Paramodulating
Ephemeris-object-and-time-to-position-to-findp
into
= [(# (two-points-to-distance
p(ephemeris-object-and-time-to-position
(abs(naif-id-to-body-igearth-naif-id)
(abs(coordinates-to-time X)
p»(convert-time utc-calendar X utcin)))
(ephemeris-object-and-time-to-position
(abs (naif-id-to-body-id) mars-naif-id)
(abs (coordinates-to-time X)
(convert-time utc-calendar X utcin))))
(abs (kilometers-to-distance) Y))]
resulting in
Y=[(# (two-points-to-distance
p(abs(coordinates-to-point rectangular j2000)
(findp, earth-naif-id
o (convert-time utc-calendar ephemeris-time-t
utcin))
(ephemeris-object-and-time-to-position
(abs (naif-id-to-body-id) mars-naif-id)
(abs (coordinates-to-tignephemeris-time-ts)
(convert-time utc-calendar ephemeris-time-t

utcin))))

(abs (kilometers-to-distance) Y))]

5

I'=[(= (ephemeris-object-and-time-to-position
(abs (naif-id-to-body-id) Bnid)

S

sented.
Proceduregenerate-traces(program, derivation)
For eaclvariable in program do
loc — last location ofsariable in
answer-term(root(derivation))
trace — compute-trace(derivation, loc, {})
traces —traces[] trace
End
returnfraces)
Endgenerate-traces

Procedur&ompute-trace
(derivation, loc, explanation)
If contains-goal-equality(explanation)
then returngoal-equality(explanation)
step-root(derivation)
If location-affected-by-step?(loc, step)
then
starting-loc, derivation, exp-eqs-
map-back(loc, step, derivation)
explanation—
congruence-closure(explanatiofll exp-eqs)
Else
starting-loc, derivation —
pass-through(loc, step, derivation)
Endif
ReturnCompute-trace
(derivation, starting-loc, explanation)
End
Endcompute-trace

Generate-tracesfinds the location of the last occurtracking the evolution of the abstract syntax tree under re-
rence of each Fortran variable in the abstract syntax treiting. Our framework based on equalities handles the full
generated in the last step of tHerivation. It callscom- range of deductive synthesis rules, including paramodula-
pute-trace with the location of each program variabldion and resolution, not just rewriting. Because of the more
Compute-trace takes a derivation, a location and the set @éneral framework of deductive synthesis, we also need to
explanation equalities assembled so far (starts out emptigw explanations to terminate in portions of the domain
and maps the location back through the derivation structtinepry, and not just the goal clause.
picking up explanation equalities. As it assembles explana- The mechanism described in this paper for providing
tion equalities, it incrementally computes the congruereglanations of variables in synthesized programs can also
closure of those equalities and, hence, represents the epealised for several other purposes including: providing ex-
ity consequences. It continues this mapping process unpllanations of function and subroutine invocations in the
goal explanation equality is derived for the Fortran variabdgnerated program, providing explanations of fragments of
The functiongenerate-comment(not shown here) mas-ntermediate steps in deductive synthesis derivations, and
sages the goal explanation equality into a human readaiderting assertions of expected program behavior into gen-
comment through template instantiation. erated code. This latter capability will be used in future

Loc is the location of interest described as a path intork to explore the use of formal explanations to provide
the formula in a derivation steftarting-loc is the location feedback loops from generated program execution to speci-
of interest, similarly described, in the previous formulfication revision. The explanations will be extended to pro-
This is the location from whicloc is derived. The functionvide descriptions of expected program behavior at interme-
location-affected-by-step? determines whether or not aliate points as related back to the specification. Discrepan-
given location is affected by a step by checking whether thes between expected and actual program behavior will be
location of interest is contained in an affected subformulauséd to modify specifications, either in an advisory or auto-
the step. If it is not, the map back to the location of interestated capacity.
in the previous formula is the identity. For example, in a
demodulation step, if the location of intereltc] is not in References
the subformula that is the result of the demodulation, then
the subformula of interest is the same location in the previ{1] y. Bertot “Occurrences in Debugger Specifications”, Pro-
ous formula and is unchanged by the step. This identity ceedings of the ACM Conference on Programming Lan-
connection is implemented tpass-through which returns guage Design and Implementation, pp. 327 - 337, 1991.
loc and a partial derivation whose last step is the previoud?] Felty, A., and Miller, D. “Proof Explanation and Revision”,
formula. Identity connections are not included in explana- University of Pennsylvania Technical Report MS-CIS-88-

. 17, 1987.
tion traces, sgass-through does not return any explana- [3] Hoare, C.A.R., “Proof of Correctness of Data Representa-

tion. tions,” Acta Informatica, pp. 271-281, 1973.

If the location of interest is affected by a step, the func-[4]Manna, Z. and Waldinger, R., “Fundamentals of Deductive
tion map-back is called to identify the location of interest in Program Synthesis,” IEEE Transactions on Software Engi-
the previous formula and to assemble the relevant explana- neering,(18) 8, pp. 674-704, 1992.
tion equalities from the derivation step (node). This function [5] M. Lowry, A. Philpot, T. Pressburger, and I. Underwood,

returns the new location of interest and the assembled ex- .- Formal Approach to Domain-Oriented Software Design
. o Environments,” Proceedings of the Ninth Knowledge-Based
planation equalities.

Software Engineering Conference, 1994.
[6] M. Lowry and J. Van Baalen, “META-Amphion: Synthesis
Related and Future work of Efficient Domain-Specific Program Synthesis Systems”,
Automated Software Engineeringl 4, pp. 199-241, 1997.

. 7] M. Stickel, R. Waldinger, M. Lowry, T. Pressburger, and |I.
The technical approach described in this paper is mos{ Underwood, “Deductive Composition of Astronomical

closely related to the literature on origin tracking in the re- goftware from Subroutine LibrariesCADE-12 1994.
write community [8]. Origin tracking relates variables and [8] van Deursen, A., Klint, P. and Tip, F., “Origin Tracking,”
subexpressions in a final program to the initial program by Journal of Symbolic Computation 15:523-545, 1993.

